The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the “root.” Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that “all houses in this place forms a binary tree”. It will automatically contact the police if two directly-linked houses were broken into on the same night.
Determine the maximum amount of money the thief can rob tonight without alerting the police.
Example 1:
1 | 3 |
Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
Example 2:
1 | 3 |
Maximum amount of money the thief can rob = 4 + 5 = 9.
所以说纯粹是怎么多怎么来,那么这种问题是很典型的递归问题,我们可以利用回溯法来做,因为当前的计算需要依赖之前的结果,那么我们对于某一个节点,如果其左子节点存在,我们通过递归调用函数,算出不包含左子节点返回的值,同理,如果右子节点存在,算出不包含右子节点返回的值,那么此节点的最大值可能有两种情况,一种是该节点值加上不包含左子节点和右子节点的返回值之和,另一种是左右子节点返回值之和不包含当期节点值,取两者的较大值返回即可:
1 | //直接使用递归 |
由于上面的方法超时了,所以我们必须优化上面的方法,上面的方法重复计算了很多地方,比如要完成一个节点的计算,就得一直找左右子节点计算,我们可以把已经算过的节点用哈希表保存起来,以后递归调用的时候,现在哈希表里找,如果存在直接返回,如果不存在,等计算出来后,保存到哈希表中再返回,这样方便以后再调用,参见代码如下:
1 | //使用hash 表对多余的递归进行优化 |
下面再来看一种方法,这种方法的递归函数返回一个大小为2的一维数组res,其中res[0]表示不包含当前节点值的最大值,res[1]表示包含当前值的最大值,那么我们在遍历某个节点时,首先对其左右子节点调用递归函数,分别得到包含与不包含左子节点值的最大值,和包含于不包含右子节点值的最大值,那么当前节点的res[0]就是左子节点两种情况的较大值加上右子节点两种情况的较大值,res[1]就是不包含左子节点值的最大值加上不包含右子节点值的最大值,和当前节点值之和,返回即可,参见代码如下:
1 | public int rob_2(TreeNode root) { |